Advancing Non-invasive, Passive Measurement of Root Zone Soil Water Content at the Subfield Scale Using Gamma-ray Spectroscopy

Sophia M. Becker, PhD candidate;

Trenton E. Franz, advisor;

Tanessa C. Morris; Bailey Mullins

University of Nebraska-Lincoln

sbecker14@huskers.unl.edu

Motivation for Estimating Soil Water Content (SWC) with Gamma-ray spectroscopy

Applications: Water management; Irrigation Climate and hydrology modeling Satellite product validation

"Developing correction algorithms for soil moisture content is one of the most urgent tasks for gammaray spectrometry research in the near future." - Reinhardt and Herrmann, 2019

Motivation for Estimating Soil Water Content (SWC) with Gamma-ray spectroscopy

Figure 1. Cross-section of gamma-ray source volume defined by an isoline (van der Veeke, 2023) for ⁴⁰K signal detected at height of 1.86 m. "Developing correction algorithms for soil moisture content is one of the most urgent tasks for gammaray spectrometry research in the near future." - Reinhardt and Herrmann, 2019

Motivation for Estimating Soil Water Content (SWC) with Gamma-ray spectroscopy

Gamma-ray spectroscopy to Soil Water Content (SWC)

Gamma-ray spectroscopy to Soil Water Content (SWC)

of H⁺ relative to all other Software from Medusa gSMS sensor from Radiometrics uses Fullelements in soil means that Medusa Radiometrics K40 and TDR at Us-Ne 3 in 2021 ^{4°}K measurements and SWC Spectrum Analysis to detects naturally 7/27/21 - 12/31/21 (from TDR here) are inversely deconstruct spectrum into ⁴⁰K, emitted gamma Measured spectrum ²³⁸U, and ²³²Th components. related. radiation from the Contribution of ²³²Th Contribution of ²³⁸U top ~35 cm with Contribution of ⁴⁰K scintillation crystal. Counts Soil Water 0.3-0.5 2.5 Energy (MeV) 240 280 320 360 van der Veeke, 2023 DOY Correction for water in vegetation has been proposed, but only tested GOAL: Validate or improve

How do we estimate actual SWC from ⁴°K?

Theoretical equation exists, but with limited field validation

in a tomato field

"Experimental proof under field conditions (scattered radiation) of attenuation coefficients calculated from theoretical application of the Lambert–Beer law (collimated beam condition) is still missing." - Reinhardt and Herrmann, 2019

theoretical equation and offer insight on practical use of the gSMS method using a robust empirical data set over a range of SWC and vegetation conditions.

The high attenuating power

Background

Study area and sampling design

Figure 2. Locations of the gSMS and IMZ's in the field.

 Non-irrigated, no-till site in eastern Nebraska, United States

- Maize/soybean rotation, sandy clay loam
- Ameriflux and Long term agro-ecosystem research (LTAR) site
- 27 gravimetric water content samples between
 5 Sept. 2021 and 23 Oct. 2023.
- 15-minute gSMS data processed to specific activity of ⁴⁰K and averaged over 4-hour periods
- Destructive biomass sampling from intensive measurement zones (IMZ's)
- 3 bulk density samples in 2023
- Chemical analysis for lattice water in 2023

Calibration Equation (in mass terms)

Total soil water (θ_{tot}) [g g⁻¹] = $\frac{\text{mass of water in pore space, soil mineral structure, and soil organic carbon}{\text{mass of dry soil}}$ Pore space water (θ_g): gravimetric water content ($\text{Mass}_{\text{pore water}}/\text{Mass}_{\text{dry soil}}$) [g g⁻¹] Mineral structure or lattice water ($\theta_{lattice}$): water released between 105°C and 1000°C [g g⁻¹] Soil organic carbon water (θ_{soc}): molar equivalent of water in soil organic carbon [g g⁻¹]

$$\Theta_{tot} = \left(\frac{I_0 * f(BWE)}{I_t} - 1\right) \frac{(\mu/\rho)_s}{(\mu/\rho)_w}$$

(1)

- I a = 4°K measurement in dry soil [Bq kg-1]
- $I_t = 4^{\circ}K$ at measurement time [Bq kg-1]

f(BWE) = a biomass correction factor in the form, $f(BWE) = (-0.0120 \pm 0.0001) * BWE + 1.0000$, where BWE is biomass water equivalence [mm] (the plant H₂O content expressed as a depth of water and estimated from drying and weighing destructive samples).

 $(\mu/\rho)_s$ = mass attenuation coefficient of soil (pure SiO₂) = 0.05257 cm² g⁻¹ for 1.46MeV

 $(\mu/\rho)_w$ = mass attenuation coefficient of water = 0.05836 cm² g⁻¹ for 1.46 MeV

Baldoncini et al., 2018; van der Veeke, 2023; Baldoncini et al., 2019

Dissatisfaction with the Calibration Equation

Figure 4. The experimental relationship between total water - the sum of gravimetric water content (θ_g), lattice water ($\theta_{lattice}$), and soil organic carbon (θ_{SOC}) - and ⁴⁰K compared to the relationship predicted by the calibration equation without a biomass correction (black line) and the corresponding 95% confidence interval.

Dissatisfaction with the Calibration Equation

Figure 4. The experimental relationship between total water - the sum of gravimetric water content (θ_g), lattice water ($\theta_{lattice}$), and soil organic carbon (θ_{SOC}) - and ⁴⁰K compared to the relationship predicted by the calibration equation without a biomass correction (black line) and the corresponding 95% confidence interval.

RMSE $(\mu/\rho)_s$ $(\boldsymbol{\mu}/\boldsymbol{\rho})_{w}$ I₀ R^2 Adj R² (g g⁻¹) (Bq kg⁻¹) (cm² q⁻¹) $(cm^2 q^{-1})$ 0.046 0.258 0.157 793 0.0584 0.0526

Adjust mass attenuation to eliminate trend in residuals

• Linear trend in the residuals can be eliminated by introducing a fitted parameter to create an "effective mass attenuation coefficient":

$$\theta_{tot} = \left(\frac{I_0 \cdot (-0.012 * BWE + 1)}{I_t} - 1\right) \frac{(\mu/\rho)_s}{(\mu/\rho)_w} * a$$

Table 1. Results of model fitting using shuffled complex evolution algorithm (sceua function in the R package, rtop v. o.6-6). Validation statistics are calculated using leave-one-out cross-validation. Parameters fit to the data are bolded and denoted with (*). The literature (SiO_2) value for $(\mu/\rho)_s = 0.05257 \text{ cm}^2 \text{ g}^{-1}$, and the value for water is $(\mu/\rho)_w = 0.05836 \text{ cm}^2 \text{ g}^{-1}$ at the ⁴°K peak energy.

RMSE (g g⁻¹)	R ²	Adj R²	I ₀ (Bq kg⁻¹)	(μ/ρ) _s (cm² g⁻¹)	(μ/ρ) _w (cm² g⁻¹)	а
0.032	0.640	0.550	935*	0.0526	0.0584	0.56*

(2)

Visualize model performance

Eq. 1:
$$\theta_{tot} = \left(\frac{I_0 \cdot (-0.012 * BWE + 1)}{I_t} - 1\right) \frac{(\mu/\rho)_s}{(\mu/\rho)_w}$$

Eq. 2: $\theta_{tot} = \left(\frac{I_0 \cdot (-0.012 * BWE + 1)}{I_t} - 1\right) \frac{(\mu/\rho)_s}{(\mu/\rho)_w} * a$

Visualize model performance

Eq. 1:
$$\theta_{tot} = \left(\frac{I_0 \cdot (-0.012 * BWE + 1)}{I_t} - 1\right) \frac{(\mu/\rho)_s}{(\mu/\rho)_w}$$

Eq. 2: $\theta_{tot} = \left(\frac{I_0 \cdot (-0.012 * BWE + 1)}{I_t} - 1\right) \frac{(\mu/\rho)_s}{(\mu/\rho)_w} * a$

Samples collected within 4 hours of precipitation events. Even though calibration samples were depth weighted, an error persists.

What sample size is needed to fit the calibration equation?

Figure 6. Relative error in total water content (θ_{tot}) calculated from the number of sample profiles indicated on the vertical axis compared to θ_{tot} calculated using all 19 sample profiles. The image was generated by smoothing and interpolating the sample relative error values shown by the black dots.

Figure 7. Root mean squared error (RMSE) in predicting total water content for all 27 samples, using an equation calibrated with the number of calibrations on the horizontal axis, using 10/19 profiles. Results are shown for Equation 2 (2 fitted parameters).

What sample size is needed to fit the calibration equation?

Figure 6. Relative error in total water content (θ_{tot}) calculated from the number of sample profiles indicated on the vertical axis compared to θ_{tot} calculated using all 19 sample profiles. The image was generated by smoothing and interpolating the sample relative error values shown by the black dots.

Figure 7. Root mean squared error (RMSE) in predicting total water content for all 27 samples, using an equation calibrated with the number of calibrations on the horizontal axis, using 10/19 profiles. Results are shown for Equation 2 (2 fitted parameters).

What sample size is needed to fit the calibration equation?

Figure 6. Relative error in total water content (θ_{tot}) calculated from the number of sample profiles indicated on the vertical axis compared to θ_{tot} calculated using all 19 sample profiles. The image was generated by smoothing and interpolating the sample relative error values shown by the black dots.

Figure 7. Root mean squared error (RMSE) in predicting total water content for all 27 samples, using an equation calibrated with the number of calibrations on the horizontal axis, using 10/19 profiles. Results are shown for Equation 2 (2 fitted parameters).

Limitations and Strengths for the Future

- Limited to a single field site
 - Vegetation types beyond maize and soybean
 - Other soils
- The need for ~5 calibrations limits the method to dedicated research contexts
- Calibrating multiple parameters poses challenges to spatial mapping
- Physical substantiation for adjusting mass attenuation coefficients

Limitations and Strengths for the Future

- Limited to a single field site
 - Vegetation types beyond maize and soybean
 - Other soils
- The need for ~5 calibrations limits the method to dedicated research contexts
- Calibrating multiple parameters poses challenges to spatial mapping
- Physical substantiation for adjusting mass attenuation coefficients

- gSMS accuracy ranks near other SWC methods (~ 0.03 g g⁻¹)
- Same biomass water correction factor appears appropriate in tomato, maize, and soybean
- Small detectors and data processing software available
 - Cost similar to cosmic-ray neutron (~ \$10K)
- Cosmic-ray Neutron research trajectory as a blueprint:
 - Parameter prediction based upon known site characteristics to reduce number of calibrations
 - Monte Carlo simulations for footprint size, heterogenous landscapes, biomass correction factors non-row crops

Takeaways

- Parameters $(\mu/\rho)_s$ and $(\mu/\rho)_w$ are important in quantifying θ_{tot} from ⁴⁰K
- Vegetation water correction factor is sufficient for maize and soybean at our field site.
- **Recommendations** for gSMS calibration based upon our field site:
 - ✓ 10 profiles in the gSMS footprint
 - ✓ 5 calibrations
 - \checkmark Use a calibration equation that fits I_0 and mass attenuation
- Future research should aim to:
 - 1) Improve physical understanding of gamma-ray attenuation under field conditions
 - 2) Reduce number of calibrations required

Thank you!

- National Agricultural Producers Data Cooperative Grant No. 2021-77039-35992
- Financial support was provided by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture through the Coordinated Research Project (CRP) D1.20.14 Enhancing agricultural resilience and water security using Cosmic-Ray Neutron Sensor (2019–2024).
- Support provided by the Daugherty Water for Food Global Institute at the University of Nebraska.

Contact: sbecker14@huskers.unl.edu

Water for **Food** DAUGHERTY GLOBAL INSTITUTE at the University of Nebraska

References

- Baldoncini, M., Albéri, M., Chiarelli, E., Giulia Cristina Raptisa, K., Strati, V., & Mantovani, F. (2018). Investigating the potentialities of Monte Carlo simulation for assessing soil water content via proximal gamma-ray spectroscopy. *Journal of Environmental Radioactivity*, 192, 105–116.
- Baldoncini, M., Albéri, M., Bottardi, C., Chiarelli, E., Kassandra Giulia Cristina Raptisa, Strati, V., & Mantovani, F. (2019). Biomass water content effect on soil moisture assessment via proximal gamma-ray spectroscopy. *Geoderma*, 335, 69–77.
- Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H.-J., & Vereecken, H. (2013). Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario: Cosmic-Ray Probe in Humid Forested Ecosystems. *Water Resources Research*, 49(9), 5778–5791. https://doi.org/10.1002/wrcr.20463
- Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., ... Van Zyl, J. (2010). The Soil Moisture Active Passive (SMAP) Mission. *Proceedings of the IEEE*, *98*(5), 704–716. https://doi.org/10.1109/JPROC.2010.2043918
- Franz, T. E., Zreda, M., Rosolem, R., & Ferre, T. P. A. (2012). Field Validation of a Cosmic-Ray Neutron Sensor Using a Distributed Sensor Network. *Vadose Zone Journal*, 11(4). https://doi.org/10.2136/vzj2012.0046
- Reinhardt, N., & Herrmann, L. (2019). Gamma-ray spectrometry as versatile tool in soil science: A critical review. *Journal of Plant Nutrition and Soil Science*, 182(1), 9–27. https://doi.org/10.1002/jpln.201700447
- van der Veeke, S. (2023). UAV-borne radioelement mapping: towards a guideline and verification methods for geophysical field measurements. University of Groningen. <u>https://doi.org/10.33612/diss.261264637</u>